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Abstract—In this paper. shear bands in single crystals undergoing single slip are analyzed. It is
suggested that there are thin layers of multiple slip even though the crystals are designed to perform
single slip. These multiple slip layers. which either occur as a result of distortion of the crystal lattice,
or are induced by pile-up dislocations, provide a location for the shear bands. Using Asaro’s plane
model, the analysis of a single crystal specimen is presented where thin layers of conjugate double
slip account for the formation of kink bands.

This analysis, by supposing that there are conjugate double slip layers in a specimen of single
slip, is equal to the analysis of a specimen with imperfections. The calculation of this paper is quite
different from those which usually appear in the literature, and is simple and clear.

1. INTRODUCTION

Single crystals deformed homogencously in tension or compression, always give way to
inhomogencitics ;: shear bands, e.g. kink bands and coarse slip bands, are formed in thin
layers (Cahn, 1951 ; Honeycombe, 1952). These inhomogencities act s barriers to further
slip, contributing to the hardening of the crystal, and on the other hand, supply places for
final fractures.

Shear bands are a type of instability. When one uses the classical plasticity theory to
account for them, one nevertheless arrives at the conclusion that they can exist only when
the crystal is degraded to be zero or minus hardening. This conclusion sometimes contradicts
the experimental facts that shear bands also appear in hardening range.

Asaro and Rice (1977) performed an analysis of the strain localizations in ductile
crystals undergoing single slip, which is the very problem that we will discuss. With the
hypothesis that non-Schmid effects may exist in crystals, they obtained shear bands with a
positive hardening rate. Their idea is new and their results agree with experimental con-
clusions in many respects.

After some careful analysis of experimental results we believe that there are some
phenomena which could not be explained by non-Schmid effects. For example, Honeycombe
(1952) pointed out that there would be no kink bands if the specimen was performing
conjugate double slip. Since there arc obviously non-Schmid effects in the conjugate double
sltp, a kink band, if it cxists in the specimen with single slip, has no reason to disappear.
Also, Cahn (1951) showed that the higher the temperature, the sparser the kink bands, and
the more the cross slip. Cross slips are the signs of non-Schmid effects, according to Asaro
and Rice (1977), then it scems that more cross slips should correspond to closer kink bands.
This is not casy to explain.

At the samce time, we notice from the experimental evidence that there are thin layers
of multiple slip in test specimens performing single slip, and these thin layers usually develop
into shear bands. And although there may be no signs of secondary slip at sites where kink
bands develop later, slips on different sets of planes in the kink band are found after
moderate deformation (Honeycombe, 1952).

The formation of shear bands in a specimen with tensile history, especially under the
condition of hardening. requires a lower shear modulus than that of elasticity. Classical
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plasticity, by assuming a normality rule setting strain rate normal to yield surface and the
smoothness of the yield surface, gives a shear modulus too stiff to account for experimental
results concerning bifurcation (Hutchinson, 1974). To get a lower shear modulus, either
the smoothness of the yield surface or the rule of normality has to be abandoned. For the
special case of crystal slip, non-Schmid effects introduce deviations from the normality rule
and multiple slip will induce singularities on the yield surface. So, the experimental evidence
mentioned above leads naturally to the hypothesis that thin layers of multiple slip that exist
or are induced in the crystals arranged for single slip are reasons of shear bands, and
specifically, layers of conjugate double slip, which are easily created by the rotation of
crystal lattice during tests will lead to kink bands.

In the following, we use the plane model of Asaro (1979) to analyze crystals which are
arranged for single slip. but are of layers of conjugate double slip. Conditions under which
shear band is possible are given. and for the specific case of rigid—plastic crystals. detailed
numerical calculations are carried out and compared with existing experiments.

As a rule. summations on repeated indices are assumed unless otherwise indicated.
Boldface symbols will be used throughout to denote tensors. and the normal ones with
subscripts to denote their components. A dot between tensors means inner product. A dyad
is expressed by putting vectors together. Greek indices are ranged from | to 2, and Latin
ones from | to 3.

2. CONSTITUTIVE LAWS

2.1 Theory of crvstal slip (Asaro, 1983)
Let & (7= |, 3) be the coordinates of reference configuration, x, be those of current
configuration, L the velocity gradient :

L=D+Q (H
where

20=L+LY 2Q=L-L"
are deformation rate and spin rate. The superscript T denotes transpose.

The deformation of the crystal is divided into two parts : one is due to lattice distortion,
regarded as purely elastic; the other comes from slip and is plastic. So,

D=D"+D", Q=0Q"+0° (2)
where superscripts p and e denote plasticity and elasticity, respectively. Assume that there
are k slip systems activated, i.e. the resolved shear stresses of the k slip systems, t's, are
just equal to the yicld stresses of their corresponding systems, ¢y, t* = 7. It the xth slip is
on the plane with the normal m* and in the direction s*, the deformation it causes will be:

d* = {(m(x)sh)_i_sh)m(z))j(zl = ph)j(z) (3)
[£1]

W' = ﬁ(m"’s“’-—s“’m"’)j . w(z)j(x) (4)

(no sum when indices are in parentheses)

where j* is the shear rate of the zth slip system. The plastic deformation due to the & slip
systems is:

k k
D" = Z pmj(n‘. QF = Zwmjm. (5)

The above equations, together with (2), lead to:
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D* = D-Zp*j®; @ = Q—Ew?j(a). 6)

If there is no coupling between elastic and plastic deformations, and &, the elastic
modulus, is of the symmetry,

& ikl = Z klij
the following elastic constitutive relation can be assumed,

F+otr(DY)=2:D (M

where g is Cauchy stress tensor, and tr (.) is the trace of the tensor in parentheses. & is the
Jaumann rate of stress tensor based on the spin of the lattice, and

o =6 a+0- ¥ (8)
Let & denote the Jaumann rate of stress tensor based on the total spin.

c=6-Q-a+a-Q. 9

Then, by combining eqns (6) to (9), the constitutive relation may be obtained as,

s+atr(D) = Z:(D~p*) (10)
in which
k
P =@+ L (W o —a W) O (1

The above equations are complete if the hardening law is supplied. Crystal hardening
is a complicated subject, and a detailed account could be found in Asaro (1983). Here we
choose a simple rule.

Obviously, the shear stress on the ath slip system is:

r=m®-q- s(a)‘
Define,

§ =068, m'= Q- m,

and the hardenirig rule of critical systems is assumed to be:

=1 = Zhi® j >0, (12)
or for an inactive critical system,
< = Zhyi® j =0. (13)

2.2. The plane model and constitutive relations

In this section, we only discuss face-centered-cubic crystals. The conclusions can be
extended to body-centered-cubic crystals.
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Assume that a crystal is undergoing conjugate double slip in the slip system (111) [T01]
and (1T1) [011]. Establish coordinates in the following way. Let axis y be the intersection
of the two slip planes. - is normal to y and makes an equal angle with the two planes. and
x 1s added to form a right-handed coordinate system. Then, when one observes in the v
direcuion, the conjugate double slip is symmetric in the x-- plane, with the projections of
the two slip line intersecting the --axis at an equal angle of about 357 16". Asaro (1979)
pointed out that conjugate double slip in three dimensions could be approximated by a
plane model in the x-- plane, and he used this model to analyze the shear bands in specimens
of conjugate double slip successfully. Recently. Iwakuma and Nemat-Nasser (1984) used the
same model in polycrystalline plasticity calculations. Here, we will use this approximation to
provide the constitutive equations for our analysis.

The constitutive equations for the conjugate double slip. In our model. crystal in the
shear band is undergoing conjugate double slip. As is shown in Fig. I, we have the following

relations for the case:
. ~cos ¢ o= smqb)
sin ¢ cos ¢

- (COS(/)> . (——sin d))
"= sin ¢ > = cosp )

The specimen is assumed to be loaded uniformly by tensile or compressive foree o per

unit arca, as shown in Fig. 3, so,
0 0
7=\ .

Afler some manipulation, using the formulas in Section 2.1, we get,

v v 26(/1""/1])
m Gy = e A (D= D 14)
T2 (h+h)+2Gsin* 24~ 1) (
B 26[(/:—/1})1-”(1_00572(!‘)']

5 2= T T A NI . (iS)
7i (h—h)+2Gcos™ 2¢

[ ]
Xy

bo

Fig. [. Conjugate double slip.
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Fig. 2. Single slip.

In obtaining the above formulae, the isotropy and incompressibility of the crystal have
been assumed, and Ay = hyy = h, by = hy, = h,.

The constitutive equations for single slip. The crystals outside of the shear band are
undergoing single slip in the primary system, whose projection on the x-z plane is shown
in Fig. 2. The single slip is also discussed in terms of a planc model. It is casy to obtain:

_ (—-cosnﬁ) _ (sim//)
"= sing ) 8= cosy/

Following the same procedure as for the conjugate double slip, and with the same
loading as there, we have,

016 =2GD,, +Gsin2yj (16)
Ty, =2GD,, —Gsin 2y j an
G172 =2GD,,~(6/2—Gcos ) j (18)
) G .
j=-G—_—;—E;[sm2:/1-(Dzz-D,,)—2cos2¢D,2] (19)

where #* is the hardening parameter for the single slip.

3. CONDITIONS FOR THE FORMATION OF SHEAR BANDS

There are numerous works about the formation of shear bands, but most of them were
concentrating on cases where material properties are the same both inside and outside the
band (Rice, 1977). Since we assume different slips inside and outside the band in our model,
we intend to make another deduction here. For simplicity, we adopt the assumption of
incompressibility and follow the scheme of Hill and Hutchinson (1974).

We emphasize that our model of a shear band, assuming conjugate double slip inside
the band and single slip outside, is only the case where imperfections resist in a homogeneous
specimen. To solve a problem like this, the conventional procedure is to follow deformation
history, the so-called M-K method (Marciniak and Kuczynski, 1967). Our approach is
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Fig. 3. Shear band.

different in that we first analyze the formation of a shear band in the imperfect layers and
then seek the compatibility conditions which define the deformations outside.

Figure 3 shows the shear band formed in a slab loaded by stress o. Let 4 be the direction
of shear band, and v the normal to it. According to Hill (1961), there are discoatinuities in
velocity fields when crossing the band. Denote the velocity of the homogeneous deformation

. ! T
outside of the band by (v), and that of inside V.

[N] " on
vy =1/ (V,X,)+ ty (20)

h - IR .
U/Lt = n‘ﬂvxj(vy‘x,y)+ l‘[f,x' (2!)

The incompressibility of the material demands,

) e .
Upp = MgV S+ typ = nuvp) = 0= (nn) = (=vyvy) (22)

s0, iy and v are orthogonal.

Use y = |, 2 over a quantity to note that the quantity is one outside or inside the
shear band, respectively, and n to denote the first Piola-Kirchhoff stress. The constitutive
equations are then

{7} ) iy} [§3 I
Pag = Capiy Upi + G 0up, {(23)

¥ . . . - . . (e
where (c‘,ﬁ,-,‘, is the current material modulus including both elastic and plastic parts, and ¢
is the hydrostutic compression.

The equilibrium across the shear band demands (Rice, 1977),

i .
Vi, = 0= v, = v, 24)

By combining (21), (23) and (24), we get,
0 2 L () (n
Vollu ViCain S = v’/[ Caply = vrf*u] vt v, (g — 9)51?' (25)

When the above equation is multiplied on both sides by #,, and summed over «, it yields,
by way of the orthogonal condition (22),

(2) (03} (1 (l‘) 76)
”:vvrtuvl C:}'Auf = V‘/"'x[ Copdy = Cr,u‘y] V- ("

It may be observed that the equilibrium equation (24) is satisfied everywhere in the
specimen. For a specific section within the shear band, the constitutive relations for the two
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. . () o .
sides of the section are the same by assumption, so, ¢ and ¢ in the brackets of (26) are
the same for the case, and (26) leads to

(2)
c:yiu ’7: Vy'li vu = O‘ (27)

This is the formation condition of a shear band. Substituting it back into (26), and con-
sidering the two sides of the section which separate the shear band from the outside
homogeneous deformation, we get the compatibility condition,

(2) ()] H
v.n, [ [ czylu] Vig = 0 (28)

which defines the critical deformation outside of the shear band when the shear band begins
to appear.

4. SHEAR BANDS IN RIGID-PLASTIC CRYSTALS

For the purpose of giving some approximate numerical results, a specimen of rigid-
plastic crystals is now calculated. using formulae from the two sections above.

Since it is assumed that the specimen undergoes conjugate double slip inside the band
and single slip outside, we nced both constitutive relations discussed in Section 2.2. The
constitutive relation of the conjugate double slip in the rigid-plastic case may be obtained
directly by letting G in (14) and (15) approach infinity,

G2—0y, = 2u*(Dyy— D)) (29)
A\
0, =2uD; (30)
Dy +Dy =0 31

where,

_h—h+acos2p

2 . h+h,

cos?2¢ C M T ginT2g

Since letting G — o6 in formulae (16)-(19) can only lead to

Dy = —isin2yj (32)
Dy, = =Dy, (33)
D,; = —lcos2y, (34)

to have the constitutive relations for the single slip in the rigid—-plastic case, another relation

between ;,,, and j must be supplied. This is obtained by eliminating G from the formulae
of (16)-(19),

.1 (822—0,)sin 2y —25,;cos 2y
=3 h* +(0/2) cos 2y

(35)

Actually, for the special case we now discuss, the constitutive relation outside the shear
band could also be expressed in the neat form as in (29)-(31). For this purpose, the
boundary conditions are used. They are,
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Ay =n; =1, =0

as can easily be read from Fig. 3. By using the formulue (40)-(43) introduced later, we can
get the following expressions of the boundary conditions above when the reference con-
figuration is chosen to coincide with the current one so that ., = 1,

v v v

o, =0 a,;=0; =0D,. (36)

Since the deformation outside the shear band is homogeneous, eqns (36) will be satisfied

everywhere outside the shear bund. The constitutive relation for single slip can thus be
arranged in the form,

11— &1y = 265Dy —Dyy) (37)
512 =20D,; {38)
D+ D,y =0, (39}

by combining formulac from (32)-(36). In the equations above,

2[i* 4 (a/2) cos 2]
T sint 2

W =a, 2 —actg” .

For the realization of the formation condition (27) and the compatibility condition
{28), the following relations are needed (Hill and Hutchinson, 1974),

. v . \%
thy = o, —a, D =0, —0,0,~a,£,

Ay =0 ~anDy; iy =6 —a Dy —a8,,. (40) {43)

By these relations, the constitutive relations listed above, und by the orthogonal
condition (22), the formation condition {27) and the compatibility condition (28) could be
expressed in the form,

(= Sovi+2Qu* —pyvivi+ [+ tapvi =0 (44)
v va[2* = 20%] — (vi—vi) (2u—23) ctg 2 = 0. (45)

{44) as an cquation of (v,/v,) = ctg 0 could be solved. Here 8 is the angle between the
normal to shear band and the x, axis, as denoted in Fig. 3. The result is,

, N N T rr

el = (y,iv, ) = e VT N TR A LT 46

g (vafv)) Wta)2 (46)

If the inequality g > 247 is assumed, the condition that (v,v) has real roots leads to
cos 2p+sindd//1+q] .,

Jo) | o TN sin? 2 47

(h/a) [ 3G+ cosds) sin® 2¢ (47)

where ¢ = h/h.

As for the inequality u > 2u* itselfl, and other cases not discussed, a detailed discussion
can be found in Asaro (1979).
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Table 1. Critical (h'o) and 8 (¢ = 35.ctg 6 > O)

q 0 1 2
(h 0)m 0.065 0.039 0.0285
0 492 50°07 50758

Table 2. Critical A*:¢ for shear bands

v
q 40.00° 42.50° 45.00° 47.50° 50.00°
0 —0.0035 0.0132 0.0368 0.0674 0.1050
{ 0.0008 0.0191 0.0442 0.0761 0.1150
2 0.0055 0.0237 0.0484 0.0800 0.1185

Since h/o is a decreasing function of g, the maximum of (h/o) satisfying (47) is the one
when equality is established. On the other hand, shear band formation becomes possible
only when the relation (47) is satisfied. So the critical (h/6). (h/6).u. is obtained by
establishing the equality in (47). By substituting (/o) . back into (46), & can be obtained.

Table | gives the (h/a),., and 0 for several ¢s. They are obtained by taking the positive
root in (46) for ctg 9, and taking ¢ = 35" for the f.c.c. crystals.

Now that (h/a)., and ¢ arc known, the compatibility condition (45) will be used to
define the ficld outside. For the usual “soft™ region of “easy glide™ within the stereographic
triangle (Honcycombe, 1984),  ranges from 547 to 35" in the plane model. By taking
suitable s, (45) leads to the (*/a) when shear bands possibly appear. Some of the results
of the calculation are listed in Table 2. We note that (h*/a),,, is the actual critical quantity
which is measared in the experiment.

It is clear from Tables | and 2 that shear bands can form in the hardening range of
crystal. The directions of the shear bunds listed are almost orthogonal to the slip direction.
These shear bands are kink bands.

For ¢ases where ctg 8 < 0, i.e. when the minus root in (46) is taken, we could obtain
shear bands by the same procedure. But now the directions of shear bands are nearly
parallel to the slip direction of the specimen, corresponding to coarse slip bands.

5. DISCUSSION

In the present paper we suggest that the shear bands of single crystals undergoing
single slip are due to the existence of layers of multiple slip. Layers of conjugate double
slip, which are common after some deformation history, can lead to kink bands.

Multiple slip actually is unavoidable in single crystals arranged for single slip, especially
after the crystals have had some history of deformation. Their appearance may be due to
the possible distortion of the specimen prepared for test, or be induced by the test. As is
well known, even well-annealed crystals contain a network of dislocations that every slip
planc will be threaded by dislocations and a dislocation moving in the plane will have to
intersect the dislocations crossing the slip planc, so-called forest dislocations (Hull and
Bacon, 1984). So. when a dislocation moving on the primary slip plane is trapped by the
forest dislocations, following dislocations on the same plane will pile-up. These pile-up
dislocations could introduce stress ficlds to trigger slips on other planes, even though the
resolved stresses on those slip systems are not critical. So, multiple slip could be a common
feature of an experiment of this kind. as Honeycombe (1952) found. We emphasize here
that the layers of conjugate double slip which the present paper concentrates on, are
particularly casy to be induced by test. Since the crystal lattice is rotating during the test
towards a position where conjugate double slip is favored, if the speeds of the layers of the
specimen are not the same in going to this position for one reason or another. those which
rotate in larger angles and are more severely influenced by the stress fields of the dislocation
pilc-ups mentioned above, will supply places for kink bands to develop, as hypothesized

SAS 1¥:i-g
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earlier in the paper. This may be the reason why kink bands are frequently observed in
crystals undergoing single slip. The reasoning here is supported by the experimental findings
that crystal rotations are more pronounced in kink bands than in the rest of the specimen
(Honeycombe, 1952).

Our hypothesis that kink band is possibly caused by multiple slip. particularly conjugate
doubile slip. could account for some common features of kink bands found in experiments.
First, we note that shear bands are localizations of deformation, and they appear in those
parts of the specimen which are weaker in shear stiffness than the rest of the specimen. If
the specimen is undergoing single slip. and there are layers of conjugate double slip, these
layers constitute layers of weaker shear stiffness, and kink bands develop. But when the
whole specimen is undergoing conjugate double slip. the layers of weaker shear stiffness are
no longer the layers of conjugate double slip itself. so kink band will not develop in this
case. Shear bands developed in the specimen of conjugate double slip are of other kinds,
as discussed by Asaro (1979). Again, pile-up dislocations which trigger multiple slip are
easter to break through forest dislocations by cross ship at high temperatures, so, the chances
for multiple slip are less and kink bands are sparser at higher temperatures.

Nevertheless our analysis in this paper is rather speculative, and the calculations are
rough in several aspects. The plane model adopted reduces an inherent three-dimensional
problem to a plane one. This will possibly introduce large errors, especially in the part of
the specimen outside of shear band, where deformation by single slip does not possess the
neat symmetry of the deformation by conjugate double slip, as is inside the shear band.
Also conjugate double slip may occur, under the stress ficld of pile-up dislocations, well
before the crystal rotates to the [001]-[T1t] boundary. If this happens, there should be an
angle between the orthogonal symmetry axes of the conjugate double slip and the loading
axis. Qur calculation does not include this case. So, further experiments or numerical
calculations are needed to have a clearer view of the problem. But the rough rigid—plastic
calculation of Scction 4 gives results which still compare with experimental conclusions
positively. This gives us some confidence.

Our analysis also bears the limitation in that shear band possibly appears in purely
single slip crystals. But in this case it will probably appear in minus or zero hardening range,
or caused by non-Schmid effects as Asaro and Rice (1977) suggested.
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